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Abstract: Calculating the cup-to-disc ratio is one of the methods for glaucoma screening with
other clinical features. In this paper, we propose a graph convolutional network (GCN) based
method to implement the optic disc (OD) and optic cup (OC) segmentation task. We first present
a multi-scale convolutional neural network (CNN) as the feature map extractor to generate
feature map. The GCN takes the feature map concatenated with the graph nodes as the input
for segmentation task. The experimental results on the REFUGE dataset show that the Jaccard
index (Jacc) of the proposed method on OD and OC are 95.64% and 91.60%, respectively, while
the Dice similarity coefficients (DSC) are 97.76% and 95.58%, respectively. The proposed
method outperforms the state-of-the-art methods on the REFUGE leaderboard. We also evaluate
the proposed method on the Drishthi-GS1 dataset. The results show that the proposed method
outperforms the state-of-the-art methods.
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1. Introduction

Retinal image analysis has a wide range of clinical applications, such as the screening of
glaucoma. Glaucoma is a chronic and irreversible eye disease, which is currently the leading
cause of global irreversible blindness [1]. It is characterized by structural changes in the optic
nerve head, which occurs preferentially at the superior and inferior poles of the optic disc (OD)
[2]. In addition, the optic cup (OC) enlarges vertically more than horizontally. Therefore, a
large vertical cup-to-disc ratio (vCDR) is considered as a distinctive feature of glaucoma, and
the measurement of vCDR has a clinical significance for structural screening and diagnosis.
Glaucoma symptoms include the changes in retinal nerve fiber layer and/or optic nerve head, such
as the thinning of neuro retinal rim and the growing of optic cup, resulting in an increased vCDR.
The measurement of vCDR combined with other clinical features is one of the methods used to
classify glaucoma [1,3]. Manual labeling is a time-consuming and tedious task. Therefore, an
automatic segmentation method is urgently needed. In clinical practice, color fundus photography
is the most cost-effective imaging modality for the examination of retinal disorders [4]. In color
fundus images, OD and OC usually appear as bright yellow regions. Examples of fundus images
from a normal eye and glaucoma are shown in Fig. 1. Due to the variations in shape, size, and
color of OD and OC regions, it is a challenging task to get a reliable and accurate segmentation
result of OD and OC in color fundus images. OD may have notable difference in color, and the
border between the OD and OC may be blurred. This situation also exists between OD and other
area. Several challenging examples of color fundus images with different appearance are shown
in Fig. 2.
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Fig. 1. Examples of (a) normal and (b) glaucoma fundus images from REFUGE [4] dataset.
The right-hand image of each example contains enlarged optic disc area, where optic disc
and cup are indicated by outer blue and inner green lines, respectively. The vertical lines
indicate the diameter of the optic disc and cup. Note that the eye with glaucoma has a much
larger cup-to-disc ratio than the normal eye.

Fig. 2. Examples of optic disc (OD) and optic cup (OC) appearance from REFUGE [4]
dataset. The first row shows different colors of optic disc, which are (a) Yellowish OD, (b)
Whitish OD, (c) Reddish OD, (d) Brownish OD. The second row shows several challenging
examples, which are (e) obscure border between optic disc and cup, (f, g) blurred border
between optic disc and other area and (h) structure change of OD.

A lot of efforts have been made in the recent years from the medical imaging community
to develop automated methods for OD and OC segmentation, which augments the recognition
quality and reduces prediction time. According to the working principle, existing methods for
OD and OC segmentation are mainly divided into three categories, which are template matching,
deformable models and machine learning based method [5–8].
For template-based methods, Aquino et al. [9] and Cheng et al. [10] modeled the OD

as a circle and an ellipse, respectively. They utilized edge detection techniques followed by
a Hough transform to detect the edges in the image. Another form of this approach is the
Hausdorff-based template matching, which was proposed by Lalonde et al. [11]. Their method
relies on Hausdorff-based template matching guided by a pyramidal decomposition for object
tracking. Wong et al. [12] proposed a modified version of the conventional level-set approach to
obtain the OD boundary, which is smoothed by fitting an ellipse. Zheng et al. [13] integrated a
prior information with the OC and OD. The segmentation task was performed by using a general
energy function based on graph cut technique. Template based methods are easy to implement,
but may require a lot of sampling points and with limited robustness.
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Deformable model-based methods need an initial contour for initialization and then deform
toward the target edge according to various energy terms, which are usually defined by using
image gradient, image intensity and boundary smoothness [14]. Osareh et al. [15] and Lowell et
al. [16] determined the OD center location firstly. Then, the OD boundary can be extracted by
a deformable contour. Xu et al. [17] labeled the contour points as positive or uncertain points
after each snake deformation, which is used to refine the OD boundary before the next contour
deformation. Joshi et al. [18] improved the Chan-Vese model by using two texture feature spaces
near the analyzed pixels and local red channel intensities. A modified region-based active contour
model was used to segment OD boundary. Deformable model-based methods could acquire
desirable results, but they are usually sensitive to the initialization.
Recently, machine learning-based method has been demonstrated to be a powerful tool in

segmentation task [19–22]. This method trains a classifier from existing labeled image data and
predicts N probabilities for each pixel in the image domain, where N is the number of classes.
Therefore, a category of each pixel can be obtained from the predicted probabilities. For OD and
OC segmentation and analysis, Fu et al. [23] employed an U-shape multi-label convolutional
network (M-Net) for joint OD and OC segmentation, which is combined with an input layer and
a side-output layer. Maninis et al. [24] performed OD segmentation by using Fully-convolutional
neural network [19] based on a VGG-16 net [25] and a transfer learning technique. Most of the
machine learning-based methods described above can automatically segment OD and OC, and
obtain desired segmentation result. However, they are pixel-wise segmentation methods that
require more computation resources. In this respect, the graph convolutional network (GCN)
can reduce the computation consumption by only predicting the object contour. As far as we
know, no GCN-based method has been proposed for OD and OC segmentation. Ling et al.
[26] proposed to predict all vertices of object contour based on GCN. However, they ignored
the multi-scale feature, which limits the extraction capability of the representative feature and
restricts the segmentation performance.
In this paper, to overcome the aforementioned problems, we propose a graph convolutional

network (GCN) based method for the OD and OC segmentation. The proposed method includes
two main parts, as illustrated in Fig. 3. The first part is a multi-scale convolutional neural network
called C-Net, which is used to generate the feature map of the input images. Many traditional

Fig. 3. Overview of the proposed method. C-Net, a multi-scale convolutional neural
network, outputs the feature map of the input images. G-Net, a graph convolutional network,
takes the output of C-Net and the initial graph nodes as input. The output of a fully connected
layer following the G-Net is our final segmentation result.
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deep convolutional neural networks (DCNN) ignore the multi-scale feature, which limits the
representative feature extraction capability. The second part of the proposed method is a graph
convolutional network, called G-Net. The input of the G-Net is the multi-scale feature map from
C-Net, concatenated with the initial graph nodes/vertices. In our proposed segmentation method,
we take the segmentation task as a regression problem. The boundary contour of the OD or OC
is presented as a graph, which contains N vertices. The locations of all vertices are predicted
simultaneously by the G-Net.

The rest of paper is organized as follows. The details of the proposed method are described in
Section 2. Section 3 shows the experimental results, including the data description, evaluation
results of the proposed method and comparison with other segmentation methods. Finally, a
discussion is provided with conclusion in Section 4.

2. Methods

2.1. Overview of the proposed method

The proposed method includes two main parts, as shown in Fig. 3. The first part called C-Net is
a multi-scale convolutional neural network, which is used to generate the feature maps of the
input images. The second part called G-Net is a graph convolutional network, which is used to
predict the vertices of the OD or OC contour.
In our C-Net, a modified ResNet [27] is used as the backbone network. We concatenate the

low level features such as corners and edges of the input image, as well as the high level semantic
features in the deep layers of the network at same time. The concatenated feature is input to a
pyramid scene parsing (PSP) block [21] that is used to obtain multi-scale features. The output of
the PSP block and the initial graph nodes are concatenated as the input of the G-Net. Our G-Net
is a graph convolutional network with six residual graph convolutional operations (ResGCOs)
and two graph convolutional operations (GCOs). Finally, a fully connected layer with ReLU [28]
activation function is used as our final output layer. In this paper, the proposed network is trained
based on a contour matching loss function.

2.2. Convolutional neural network (C-Net)

Our convolutional neural network is a modified ResNet-101, which is used as the feature extractor
of the input images. Deep network architecture and repeated down-sampling operation in many
CNNs make it difficult to obtain effective features in the last layer for object representation.
Motivated by U-Net [20] architecture, we proposed a multi-scale convolutional neural network
called C-Net, which is shown in Fig. 4. Resnet-101 is used as the main structure of C-Net (Fig. 4.
Part a), but the last average pooling layer and the fully connected layer of ResNet-101 are removed.
Meanwhile, the dilation convolution operation with 2 and 4 dilated rates are used in the last two
residual blocks (Fig. 4. res3 and res4), respectively. In this residual structure, only the 7 × 7
convolution is followed by a maxpooling operation. The feature maps in the residual blocks are
down-sampled by convolution operation with a stride of 2. In order to obtain multi-scale features
of the input image, we use four 3 × 3 convolution operations to encode features obtained from
the 7 × 7 convolution, residual block 1, 2, 4, respectively (Fig. 4. Part b). To concatenate features
obtained from the 3 × 3 convolution operations, bilinear up-sampling operations with 2 and 4
scale factors are added to make these feature maps have the same spatial size of 112 × 112. The
concatenated feature passes through two 3 × 3 convolution operations and are feed into the PSP
block to obtain C-Net output feature with a dimension of 28 × 28 × 512. The pyramid parsing
module (PPM) [21] was used to extract multiscale features. In addition, the 7 × 7 convolution
and each 3 × 3 convolution operation in the C-Net are also followed by a batch normalization
operation and a ReLU activation function. The input of PSP block is the output of two cascaded
3 × 3 convolution operations in C-Net.
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Fig. 4. C-Net architecture. In the figure, 7 × 7conv and 3 × 3conv represent 7 × 7 and 3 × 3
convolution operation, respectively, while ×2up and ×4up represent bilinear up-sampling
operation with 2 and 4 scale factors, respectively. The numbers on the arrows represent
the sizes of feature maps. The pyramid parsing module (PPM) [21] was used to extract
multi-scale features.

2.3. Graph-based convolutional neural network (G-Net)

In this section, the theoretical motivation for a graph-based convolutional neural network model
is introduced. A graph {V ,E} is used in Graph Convolutional Network [29], where V and E are
the set of nodes and edges respectively. The layer-wise propagation rule of a multi-layer GCN
can be formulated as:

H(l+1) = σ(ÃH(l)W (l)), (1)

where Ã = A + I is the adjacent matrix of an undirected graph G with self-connections. I is
the identity matrix. W (l) is a trainable weight of the GCN layer. σ(.) is an activation function.
H(l) ∈ RN×dl is a matrix of activations in the lth GCN layer, where N is the number of nodes and
dl is the dimension of the input feature. H(l+1) ∈ RN×dl+1 is the output feature of (l + 1)th layer,
where dl+1 is the dimension of the output feature.

To get the initial graph, we firstly localize the disc region by using the existing detection
method [23], and then crop the fundus image based on the detected disc region. We initialize
nodes along a circle centered in the cropped image with a diameter of image height for the optic
disc and a diameter of 70% of image height for the optic cup. In the G-Net, the segmentation
task is considered as a regression problem. The boundaries of OD and OC are presented as a
graph, which contains N vertices. G-Net is trained to predict the shift of the nodes from the
initial locations to their ground truth locations. In order to obtain effective shift information, two
GCOs and six cascaded ResGCOs are proposed. The GCO contains a matrix product operation
and two fully connected layers, which is used to adjust the feature dimension. The ResGCO is
constructed by two GCOs with a short skip connection, which is used to learn the representative
feature. Finally, we apply a single fully connected layer to the output feature of the G-Net and
predict a relative shift of each vertex from the initial location to the ground truth location. For
each vertex, the new location of (xi, yi) will be updated to (x′i , y

′
i ) = (xi + ∆xi, yi + ∆yi) after a

graph convolutional operation. G-Net architecture is shown in Fig. 5. In our implementation, the
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G-Net is executed T times and the final step is used as the final result. T is an empirical value
that was set as 3 in the experiment. The contour matching loss is used to monitor the training
process of G-Net.

Fig. 5. G-Net architecture. The graph convolution operation (GCO) is used at the beginning
and end of the G-Net to adjust the feature dimension. The residual graph convolution
operation (ResGCO) is used to learn more representative feature for segmentation.

In the experiment, we use 40 points as nodes of the graph. Each node takes one pixel in the
contour. The neighboring nodes are connected with spline curves to form a smooth contour. Two
initial contours were used to segment OD and OC, respectively. The convnet features (C-Net
output) are linked with the nodes based on the concatenation operation. The concatenation
operation can assign the convnet feature to the nodes as a feature vector. Figure 6 shows how
the convnet feature linked with the nodes to form G-Net input features (40 × 258). The G-Net
input features will be updated by the GCN. The updated features are then used to predict the new
locations of the nodes.

Fig. 6. The connection of the C-Net and G-Net. It shows how the C-Net feature linked with
the nodes.

2.4. Loss function

In this paper, a contour matching loss is presented to evaluate the difference between the ground
truth contour and the predicted contour of the OD and OC. In order to make a precise matching
between the ground truth contour and the predicted contour, the ground truth and the predicted
contour vertices are assumed have a same well-defined order. The contour vertices of the
ground truth are defined as gv = {gv0, gv1, . . . , gvN−1}, and the predicted vertices are defined as
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pv = {pv0, pv1, . . . , pvN−1}. The contour vertices matching loss Lgp can be formulated as follows.

Lgp(pv, gv) = min
j∈[0· · · ,N−1]

N−1∑
i=0
| |pvi − gv(j+i)%N | |1, (2)

where N is the number of the contour vertices, i and j are the indexes of the ordered vertices of
the ground truth contour and the prediction, respectively.

3. Results

3.1. Materials

Public fundus image dataset REFUGE [4] for OD and OC segmentation was employed to evaluate
the performance of the proposed method. The dataset consists of 1200 color fundus images, 120
with glaucoma and 1080 without. All fundus images are stored in JPEG format, with 8 bits per
color channel. The dataset was divided into three subsets officially, each of them contains 400
fundus images and has equal proportion of glaucomatous (10%) and non-glaucomatous (90%)
cases. The fundus images were acquired by two devices: a Zeiss Visucam 500 fundus camera
with a resolution of 2124×2056 pixels and a Canon CR-2 device with a resolution of 1634×1634
pixels. Specifically, one subset was acquired from Zeiss Visucam 500 camera, while other two
subsets were acquired from Canon CR-2 device. The annotation of OD and OC in each image
was manually labeled by experts. The ground-truth of REFUGE test set is publicly available.

The Drishti-GS1 [30,31] dataset was used to evaluate the robustness of the model. The dataset
contains 101 images that were collected at Aravind eye hospital, Madurai, India. All images
were labelled by 4 eye experts with different clinical experiences. In this dataset, 50 images were
selected as training set, while 51 images were selected as test set.

3.2. Evaluation metrics and experiment design

Different quantitative metrics were employed to evaluate the performance of the proposed method,
which are Dice similarity coefficient (DSC), Jaccard index (Jacc), also called intersection over
union (IoU), Sensitivity (Sen.), and Specificity (Spec.) for OD and OC separately, and the mean
absolute error (MAE) of the vCDR estimations. In particular, most of the existing works for OD
and OC segmentation were evaluated according to Jacc. Therefore, Jacc was selected as a main
metric for comparison between different methods.
The Jacc index and DSC measure the overlap between two regions, which are defined as:

Jacc =
|Yk

⋂
Ŷk |

|Yk
⋃
Ŷk |
× 100%, DSC =

2|Yk
⋂
Ŷk |

|Yk | + |Ŷk |
× 100%, (3)

where Yk and Ŷk are the ground truth and predicted segmentations of the region of interest k,
respectively (with k = OD or OC).
The MAE is defined as:

MAE = abs(vCDR(ŶOC, ŶOD) − vCDR(YOC,YOD)), (4)

where vCDR(OD,OC) = d(OC)
d(OD) is a function that estimates the vCDR based on the vertical

diameter d of the segmentations of the OD and the OC, respectively.
The Sen. and Spec. are defined as:

Sen. =
TP

TP + FN
× 100%, Spec. =

TN
TN + FP

× 100%, (5)

where TP, TN, FP, and FN present true positive, true negative, false positive, and false negative,
respectively.
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3.3. Training details and parameter setting

The proposed method was mainly implemented by a deep learning framework PyTorch and
Python language. The implementation code of the method ran on a platform of Ubuntu 16.04
with 1 GPU of NVIDIA GTX 1070. The implementation code was not optimized and did not use
multi-thread and parallel programming.

In the C-Net and G-Net, all convolutions are followed by a batch normalization. The number
of epochs was 27. Adam optimizer was used to train the model and the training batch size was 6.
For other hyperparameters, the initial learning rate is 3e-4, weight decay is 1e-5 and the initial
learning rate was decayed by gamma=0.1 every 4 epochs.

3.4. Experimental results

The loss curve of the training process is shown in Fig. 7. With the contour matching loss function,
the loss value decreases smoothly. It also shows that the training hyperparameters were set
properly.

Fig. 7. The loss curve of the training process. The number of epochs was 27.

Table 1 shows the quantitative results of the proposed method on REFUGE test set. Table 2
shows the comparison of the proposed method with the state-of-the-art segmentation methods on
the REFUGE leaderboard. Ranked first and second methods were chosen for comparison. The
bold font represents the best performance. Figure 8 shows the receiver operating characteristics
(ROC) curve of our classification result for glaucoma/normal derived from the calculated vCDR.
We only used vCDR for glaucoma classification without any additional processing. A higher
vCDR value represents a higher risk of glaucoma. The ROC curve is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) at various threshold settings. From the
Fig. 8, we can observe that the calculation of the vCDR derived from the segmentations performs
similarly to the one derived from the ground truth segmentation, in terms of AUC to predict
glaucoma.

Correlation analysis was performed to assess the reliability of the proposed method. Figure 9
shows the scatter plot of the predicted area (total number of pixels) using proposed method vs.
the expert manually labeled area. High correlation coefficient demonstrates that the proposed
method gives a satisfactory segmentation result. High determination coefficient means that most
points are near to the line, which shows no systematic difference.
The area deviations of OD and OC are shown in the Bland-Altman plot (Fig. 10), which

measures the agreement between the manually labeled region and the region obtained from the
proposed method. Two red dotted lines indicate the average ± 1.96 standard deviation, and the
interval formed by the red lines indicates the 95% limits of agreement (LoA). The two sets of
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Fig. 8. The receiver operating characteristics (ROC) curves and the area under the curve
(AUC) values of the proposed method and the ground truth on REFUGE test set.

Table 1. Quantitative results of the proposed method on REFUGE test set. Avg., Std., Max and Min
represent average values, standard deviations, maximum and minimum, respectively.

Jacc (%) DSC (%) Sen. (%) Spec. (%)

DISC

Avg. 95.64 97.76 98.73 99.95

Std. 2.19 1.17 1.50 0.04

Max 98.70 99.34 100 100

Min 84.19 91.42 90.94 99.79

CUP

Avg. 91.60 95.58 94.93 99.99

Std. 3.51 2.00 3.14 0.03

Max 97.35 98.66 100 100

Min 68.98 81.64 83.94 99.52

Table 2. Comparison with the state-of-the-art methods. Dice similarity coefficients (DSC) metric
was used for evaluating the optic cup and disc, while the mean absolute error (MAE) was used for

evaluating the vertical cup-to-disc ratio (vCDR).

Method Disc rank Cup rank vCDR MAE rank Disc DSC(%) Cup DSC(%) MAE

CUHKMED 1 2 2 96.02 88.26 0.0450

Masker 7 1 1 94.64 88.37 0.0414

Ours - - - 97.76 95.58 0.0136

Fig. 9. Correlation analysis of the segmentation results with ground-truth for (a) optic
disc (OD) and (b) optic cup (OC), which uses area as the evaluation standard. The black
line indicates no systematic difference. c and r2 represent correlation coefficient and
determination coefficient, respectively.
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data are consistent when the most of scattered points fall within the 95% LoA. 23 points fall
outside of the 95% LoA for OD, and 17 for OC. The blue solid and orange dotted line indicate
the mean value of the differences and zero bias line, respectively. The closer the blue line with
the orange line, the better the segmentation performance. It can be observed that most cases fall
within the 95% LoA and the average of the OC segmentation difference is very close to 0.

Fig. 10. Bland-Altman plot of the agreement between the manually labeled regions and
the segmentation results obtained from the proposed method for (a) optic disc (OD) and (b)
optic cup (OC). Area was used as the evaluation standard. The horizontal and vertical axis
represent the average value and the difference of the predicted (PRE) area and the manually
labelled (i.e. ground-truth (GT)) area, respectively.

Table 3 shows the comparison of the proposedmethod with CNNmethods [19–22] on REFUGE
test set. We used the official implementations code for all the experiments, and the parameters
were established by authors. The evaluation results were reported as average ± standard deviation.
It can be observed that the proposed method achieves the highest Jacc with the lowest standard
deviation. Moreover, the segmentation performance of the proposed method on OD and OC
is superior to other methods. The testing for statistical significance was performed at the OD
and OC between the reference methods and our method in terms of Spec., Jacc and DSC. The
analysis shows that there is a statistically significant difference at the OD and OC in terms of the
three metrics. Significance analysis demonstrates the superiority of the GCN based method. For
segmentation of OD, PSPNet tends to be over-segmentation. Therefore, its sensitivity is higher
than ours. However, its specificity is lower than ours. For segmentation of OC, the sensitivity of
FCN is higher than ours, but its variance is larger and the specificity is lower than ours.

Table 3. Comparison with other segmentation methods on REFUGE test set. Our method achieves
the highest Jacc with the lowest standard deviation.

FCN [19] U-Net [20] PSPNet [21] DeepLabv3+ [22] Ours

D
IS
C

Jacc(%) 93.67 ± 2.43 88.66 ± 5.59 94.03 ± 2.48 90.77 ± 3.65 95.64 ± 2.19
DSC(%) 96.71 ± 1.34 93.89 ± 3.39 96.90 ± 1.34 95.12 ± 2.07 97.76 ± 1.17
Sen.(%) 96.91 ± 2.78 95.55 ± 5.47 99.01 ± 1.25 96.46 ± 3.43 98.73 ± 1.50

Spec.(%) 99.15 ± 0.57 98.08 ± 1.03 98.69 ± 0.76 98.43 ± 1.30 99.95 ± 0.04

C
U
P

Jacc(%) 73.82 ± 10.23 60.53 ± 13.26 80.59 ± 8.47 77.96 ± 9.67 91.60 ± 3.51
DSC(%) 84.52 ± 7.08 74.51 ± 11.08 88.99 ± 5.47 87.25 ± 6.74 95.58 ± 2.00
Sen.(%) 96.14 ± 7.35 81.77 ± 17.22 92.84 ± 9.00 90.58 ± 11.15 94.93 ± 3.14
Spec.(%) 98.57 ± 0.69 98.48 ± 1.10 99.25 ± 0.60 99.27 ± 0.49 99.99 ± 0.03
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Figure 11 shows the box plots, which indicates the distribution of the Jacc from the different
methods. It can be observed that the proposed method has the highest median Jacc and the lowest
deviation.

Fig. 11. Jacc distribution of different segmentation methods on optic disc (OD) and optic
cup (OC). The box plot is composed of 5 metrics, which are minimum value, lower quartile,
median, upper quartile, and maximum value. The red points represent outliers.

Figure 12 shows several segmentation results of OD and OC with different appearance
situations, where red and blue lines indicate the segmentation results and manually labeled results.

Fig. 12. Result visualization of optic disc (OD) and optic cup (OC) segmentation, where
blue curves are manually labelled by expert and red curves are predictions of the methods.
The first to fourth rows show the different appearance of OD and OC, including boundary
blurring between OD and OC (the first row), blurring between OD and external area (the
second row) and structural changes of OD and OC (third and fourth row). Each column
represents a segmentation method, which is FCN, U-Net, PSPNet, Deeplabv3+ and the
proposed method, respectively.
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It can be observed that the existence of blurred border confuses the other methods and causes
erroneous segmentation results. In contrast, the proposed method works well for most cases in
the given examples and the segmentation results are relatively accurate.

To verify the robustness of the proposed method on normal and glaucoma images, we evaluated
the segmentation results of these two categories respectively. The evaluation results are shown
in Table 4. From the table, we can see that the segmentation accuracies of glaucoma and
normal images are close. In addition, we trained the model on REFUGE dataset and tested it on
Drishti-GS1 test set. The results were compared with several state-of-the-art methods, which are
shown in Table 5. DSC values of these methods were obtained from their corresponding papers.
From the table, we can observe that the model trained on the REFUGE training set can predict
the images in the Drishti-GS1 test set with satisfactory accuracies. Therefore, the model is robust
between different datasets.

Table 4. The segmentation result of the proposed method for glaucoma and normal images on the
REUFGE test set.

Glaucoma Normal

Cup Disc Cup Disc

Jacc(%) 89.85 ± 6.80 95.92 ± 1.97 91.80 ± 2.88 95.61 ± 2.22

DSC(%) 94.51 ± 4.02 97.91 ± 1.04 95.70 ± 1.59 97.74 ± 1.18

Sen.(%) 96.44 ± 3.20 98.59 ± 1.65 94.76 ± 3.09 98.74 ± 1.48

Spec.(%) 99.94 ± 0.09 99.95 ± 0.04 99.99 ± 0.02 99.95 ± 0.04

Table 5. Comparison with other state-of-the-art methods on Drishti-GS1 test set.

ED [32] Depth DRIUnet [33] PD DRIUnet [33] ET-NET [34] Ours

Cup DSC(%) 77.7 81.6 84.8 93.1 95.7
Disc DSC(%) 92.7 97.4 96.3 97.5 97.8

Figure 13 shows the segmentation results of glaucoma on two test sets. It can be observed
that the model can handle the irregular shape and the blurred border cases. Figure 14 shows
a limitation of the proposed method. Figure 14(a) and (b) show two cases with the inferior
segmentation results on the optic cup, where (a) has the limited Jacc and specificity and (b) has the
limited sensitivity in the test set. Figure 14(c)-(f) show the cases with the inferior segmentation
results on the optic disc, which have the limited performance on Jacc, sensitivity or specificity in
the test set.

4. Discussion and conclusion

In this work, we propose a graph convolutional network based method for the automatic
segmentation of optic disc and cup region in fundus images. The two key parts of the proposed
network are G-Net and C-Net. In order to acquire rich feature information, we employ a
multi-scale convolutional neural network (C-Net) as the feature extractor, which learns the
low-level and high-level features to assist G-Net for further prediction. The output feature of
C-Net is concatenated with the graph nodes as input of G-Net for the subsequent prediction.
We performed a series of experiments to verify the effectiveness and the advantage of the

proposed method compared with other segmentation methods. Compared with other reference
methods, the proposed method performs best, which gets a mean Jacc of 95.64% and 91.60% for
optic disc and cup, respectively. In addition, the significance analysis demonstrates the superiority
of the proposed method. We also evaluated the robustness of the proposed method by testing on
normal and glaucoma images, respectively. To verify that the model can work well on different
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Fig. 13. Segmentation results of the proposed method for glaucoma cases in (a) REFUGE
test set and (b) Drishti-GS1 test set, respectively.

Fig. 14. The limitations of the proposed method. These images have blurred target edges
and irregular border shape.

datasets, we trained the model on REFUGE dataset and tested it on Drishti-GS1 test set. The
results showed that the proposed method is robust between different datasets. From Fig. 8, we
can observe that the proposed method obtains an AUC of 0.9530 for glaucoma classification.
The result is inferior to that of CUHKMED (AUC=0.9644) [4]. The reason is that we only used
vCDR for the glaucoma classification without any additional processing. However, CUHKMED
use a pre-processing for glaucoma classification. Specifically, CUHKMED used two ellipses to
fit the OD and OC masks to obtain vCDR. In addition, they normalized vCDR into 0-1 as a final
segmentation classification probability.
From the visualization of the segmentation results, it can be observed that blurring bounders

and structural changes in disc/cup are the main challenges, which may result in segmentation
failure by other methods. However, the proposed method can handle these conditions and give
more reliable results for both normal and glaucoma cases. For further evaluation, the sensitivity
and specificity of the optic disc and cup segmentation were also calculated. The mean sensitivity
of optic disc and cup are 98.73% and 94.93%, while the specificity are 99.95% and 99.99%,
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respectively. We also analyzed the cases with decreased segmentation accuracies. The main
reasons are the structural changes and irregular edges of the optic disc/cup. Our future work will
focus on developing robust and accurate methods.

In summary, we propose an image segmentation method based on GCN. The proposed method
outperforms several state-of-the-art methods on the REFUGE dataset and Drishthi-GS1 dataset.
In our subsequent studies, we will study the problem of learning irregular edges by increasing
the number of GCN vertices. In addition, we have intentions to apply the proposed method for
more organ segmentation tasks.
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